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Abstract

The statistical properties of a self-similar adverse pressure gradient (APG) tur-

bulent boundary layer (TBL) are presented. The flow is generated via the

direct numerical simulation (DNS) of a TBL on a flat surface with a farfield

boundary condition designed to apply the desired pressure gradient. The con-

ditions for self-similarity and appropriate scaling are derived, with the mean

profiles, Reynolds stress profiles, and turbulent kinetic energy budgets non-

dimensionalised using this scaling. The APG TBL has a momentum thickness

based Reynolds number range from Reδ2 = 300 to 6000, with a self-similar re-

gion spanning a Reynolds number range from Reδ2 = 3500 to 4800. Within

this range the non-dimensional pressure gradient parameter β = 1. Two-point

correlations of each of the velocity components in the streamwise/wall-normal

plane are also presented, which illustrate the statistical imprint of the structures

in this plane for the APG TBL.
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1. Introduction

The efficient design and performance of many engineering systems rely on

fluid flows remaining attached to aerodynamic surfaces in regions of adverse

pressure gradient (APG). Separation of the boundary layer can potentially re-

sult in catastrophic consequences or at best sub-optimal performance. Adverse

pressure gradients typically arise due to the presence of convex curved surfaces,

such as those on wind turbine blades, turbo-machinery and aircraft wings. These

configurations are difficult to systematically study, since the pressure gradient

applied to the turbulent boundary layer (TBL) is constantly changing in the

streamwise direction [1]. There has been a long history of theoretical, exper-

imental and numerical research into TBL. The vast majority of the research,

however, has been centred on the zero pressure gradient (ZPG) case, while

many aspects of turbulent structure and appropriate scaling of APG TBL re-

main largely unresolved. The study of APG turbulent boundary layers (TBL) in

an appropriate canonical form is, therefore, of utmost importance to understand

the influence of local pressure gradient.

The most appropriate canonical APG TBL to study is arguably one that is

self-similar. A self-similar TBL (or portion thereof) is defined as one in which

each of the terms in the governing equations have the same proportionality

with streamwise position over the domain of interest [2, 3, 4]. According to

the definition in [3], this means that the non-dimensional pressure gradient,

β = δ1(∂xPe)/τw, must be constant, where ∂xPe is the farfield pressure gradient,

δ1 is the displacement thickness, and τw is the mean shear stress at the well.

Note this definition will be broadened in section 3 of the present manuscript. For

a ZPG TBL β = 0, for a favorable pressure gradient (FPG) β < 0, for an APG

β > 0, and immediately prior to separation β → ∞. Imagine two boundary

layers, one starting with an APG that is then accelerated to ZPG, and another

starting with a FPG that is then decelerated to ZPG. The statistical properties

at the position of ZPG of these two scenarios are different from each other, and

also different from the canonical ZPG flow [5]. The flow structure, statistics,
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stability properties and scaling are all dependent upon the specific streamwise

distribution of the pressure gradient. This illustrates the challenge of APG TBL

studies and the value of studying the self-similar case.

Much of the theoretical work in the study of APG TBL is based on deriving

the conditions and scaling properties for self-similar boundary layers, in which

all statistics collapse down onto a single set of profiles for a given pressure

gradient [2, 6, 3, 7, 8, 4, 9, 10, 11]. Additional theoretical studies have focussed

specifically on the limiting case of zero-shear-stress (β → ∞) self-similar APG

TBL, which is the scenario immediately prior to the point of mean separation

[12, 13]. Attempts have also been made to collapse the statistical profiles of

non-self-similar APG TBL using various definitions of the pertinent velocity

and length scales [14, 15, 16].

There have been numerous experimental campaigns studying the effect of

APG. Most of these studies have focussed on the statistical velocity profiles

[17, 18, 19, 20, 21], with some recent measurements also presenting information

on the spatial structure of such flows [22]. A smaller number of experiments have

also attempted to produce self-similar boundary layers, in which the statistical

profiles at various streamwise positions collapse under the appropriate scaling

[23, 24, 25]. The study of [24] in particular focussed on the β → ∞ case with a

momentum thickness based Reynolds number, Reδ2 = 4 × 104. The consistent

observation across all of these studies, is the presence of a second outer peak in

the variance of the velocity fluctuations located further away from the wall than

the inner peak observed in ZPG TBL. This is due to the shear being distributed

throughout the boundary layer imparted by the pressure gradient. This outer

peak also becomes more prominent with increasing pressure gradient.

DNS have also been undertaken of both self-similar and non-self-similar APG

TBL. Each of the following DNS are performed in a rectangular domain, with

the APG applied via the prescription of the farfield boundary condition. The

first DNS of an APG TBL was that of the [26], which produced a non-self-

similar TBL with Reδ2 = 1600, and β = 2. There have also been several DNS

of separated APG flows [27, 28, 29], with the most recent of which [29] having
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the largest Reynolds number of Reδ2 = 2175. The only attempted DNS of self-

similar boundary layers are those of [30] and [31]. In the study of [30] two DNS

were presented, the first with Reynolds numbers ranging from Reδ2 = 390 to 620

with β = 0.24, and the second having a Reynolds number range of Reδ2 = 430

to 690 with β = 0.65. In the more recent study of [31] a higher Reynolds

number APG TBL DNS was presented with Reδ2 = 1200 to 1400, and also with

a stronger pressure gradient of β = 1.68.

The focus of the present study is to add to the current body of APG TBL

DNS databases, and in particular address the need for higher Reynolds number

self-similar APG flows. Specifically we present a DNS of an APG TBL with a

Reynolds number range of Reδ2 = 300 to 6000, which is larger in both range and

magnitude of the aforementioned APG TBL DNS studies. Self-similarity of the

TBL is also demonstrated from Reδ2 = 3500 to 4800, within which β = 1. In the

current manuscript we present the details of DNS, characterise the APG TBL

on the basis of scaling properties, one-point and two-point statistics. Firstly

in section 2, an overview of the TBL DNS code is presented along with the

farfield boundary condition (BC) required to generate the self-similar APG TBL.

The APG TBL is characterised and compared to the ZPG TBL on the basis

of standard boundary layer properties including integral length and velocity

scales. In section 3, the conditions for self-similarity (and associated scaling)

are derived from the boundary layer equations and evaluated for both the APG

and ZPG cases. Profiles of the mean velocity deficit and Reynolds stresses from

the DNS of the APG are then compared to those of the ZPG DNS on the basis

of both the derived scaling and also viscous scaling in section 4. In section 5

two-point correlations of each of the velocity components are presented in the

streamwise/wall-normal plane for the APG TBL and contrasted with previous

ZPG DNS results. Finally concluding remarks are made in section 6.
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2. Direct numerical simulation

The code adopted within solves the Navier-Stokes equations in a three-

dimensional rectangular volume, with constant density (ρ) and kinematic vis-

cosity (ν). The three flow directions are the streamwise (x), wall-normal (y)

and spanwise (z), with instantaneous velocity components in these directions

of U , V and W . Notation used for the derivative operators in these direc-

tions are ∂x ≡ ∂/∂x, ∂y ≡ ∂/∂y, and ∂z ≡ ∂/∂z. Throughout the paper the

mean velocity components are represented by (〈U〉, 〈V 〉, 〈W 〉), with the averag-

ing undertaken both in time and along the spanwise direction. The associated

fluctuating velocity components are (u, v, w).

Details of the algorithmic approach to solve the equations of motion are as

follows. A fractional-step method is used to solve the governing equations for

the velocity and pressure (P ) fields [32, 33]. Fourier decomposition is used in

the periodic spanwise direction, with compact finite difference in the aperiodic

wall-normal and streamwise directions [34]. The equations are stepped forward

in time using a modified three sub-step Runge-Kutta scheme [35]. The code

utilises MPI and openMP parallelisation to decompose the domain. For further

details on the code and parallelisation, the interested reader should refer to

[36, 37]. In the following sections we present: the boundary conditions necessary

to implement the ZPG and APG TBL; numerical details; and characterise both

the APG and ZPG TBL flows.

2.1. Boundary conditions

The boundary conditions of the ZPG TBL DNS code are outlined below. The

bottom surface is a flat plate with a no-slip (zero velocity) BC. The spanwise

boundaries are periodic. Due to the TBL growing in height as it develops

in the streamwise direction, a downstream streamwise normal recycling plane

is copied, and mapped to the inlet BC [38]. At the farfield boundary a zero

spanwise vorticity condition is applied, and the wall normal velocity specified.

It is important that the wall normal velocity be prescribed, as opposed to the
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streamwise velocity, so as to not over constrain the system [39]. This may not be

a significant problem for ZPG TBL, but becomes an increasingly significant issue

as the pressure gradient increases. The wall normal velocity at this boundary

is given by

VZPG(x) = UZPG ∂xδ1(x) , (1)

where UZPG is the constant freestream streamwise velocity, and δ1 is the dis-

placement thickness [37].

Due to the properties of the APG TBL, we also use a slightly different

definition of displacement (δ1) thickness, and of the momentum thickness (δ2)

for that matter. These length scales are given by

δ1(x) =

∫ δ(x)

0

(

1−
〈U〉(x, y)

Ue(x)

)

dy , and (2)

δ2(x) =

∫ δ(x)

0

(

1−
〈U〉(x, y)

Ue(x)

)

〈U〉(x, y)

Ue(x)
dy , (3)

where δ(x) is the wall normal position of the maximum velocity along the profile,

Ue(x). We require this modified definition, because at the farfield boundary of

the APG TBL ∂V∞/∂x is not necessarily negligible, and less than zero. This

means for the farfield to have zero spanwise vorticity, ∂U∞/∂y must also be less

than zero. The 〈U〉 profile, therefore, has a turning point in y. The integrals in

(2) and (3) must then stop at this turning point (y = δ(x)).

To generate the self-similar APG TBL flow, the farfield wall-normal velocity

BC must be derived. The wall normal suction velocity VAPG(x) is deduced

from UAPG(x) via the boundary layer streamfunction solution [3] in the farfield

region as

VAPG(x) = − [y∞ − δ1(x)] ∂xUAPG(x) + UAPG(x) ∂xδ1(x) , (4)

where y∞ is the wall normal position of the farfield boundary. To imple-

ment such a boundary condition in the DNS, we use the specific values for

the incipient separation case from [3], where the freestream streamwise velocity

UAPG(x)/U∞(x0) = (x − xorigin)
−0.23, and δ1(x) = 0.041(x − xorigin), where
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xorigin is the virtual origin of the boundary layer, which in the present DNS

is set to xorigin = xs. Equation (4) can also be deduced from the similarity

analysis of continuity equation section 3.

The structure of the complete farfield wall normal BC, V∞(x), is as follows.

In the APG TBL DNS, to allow the rescaling necessary for the inlet BC, an

initial ZPG TBL is simulated up until the streamwise position xs = 500δ1(x0)

(located after the recycling plane) by applying VZPG(x) as defined in (1). Note

δ1(x0) is the displacement thickness at the inlet of position x = x0. Downstream

of the position xf = 700δ1(x0) the wall normal velocity VAPG(x) is applied at

the farfield boundary as given by (4), which imparts the desired deceleration and

hence, expansion of the boundary layer. From xs to xf the velocity VAPG(x) is

gradually introduced using a smoothing function. Finally the farfield velocity is

transitioned from suction (V∞(x) > 0) at xb = 3800δ1(x0) to blowing (V∞(x) <

0) at the outlet to reduce the number of instantaneous reversed flow events,

to ensure that numerical stability of the outflow BC is maintained. The ZPG

and APG farfield boundary conditions, V∞(x)/U∞(x0), are illustrated in Fig. 1,

where U∞(x0) is the freestream streamwise velocity at the inlet.

2.2. Numerical details

The numerical details of the ZPG and APG simulations are summarised in

table 1. The number of grid points in the streamwise, wall normal and spanwise

directions are given by Nx,Ny, and Nz, respectively, along with the extents of

the computational domain in these directions (Lx, Ly, Lz). The computational

domain size is first non-dimensionalised with respect to the inlet boundary layer

thickness (δ99(x0)), which is the same in both the APG and ZPG simulations.

Since the APG profiles of 〈U〉 have a turning point in y, δ99(x) is defined as the

smallest value of y for which 〈U〉(x, y) = 0.99 Ue(x). The APG case has a larger

wall normal domain (Ly) and more points in this direction (Ny), which is neces-

sary since the APG TBL expands more quickly while evolving in the streamwise

direction than the ZPG TBL. In fact with respect to the boundary layer thick-

ness (δ99(xm)) at the centre of the domain of interest (xm = 2500δ1(x0)), the
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APG case has a larger wall normal domain of Ly = 4.72δ99(xm), as opposed to

Ly = 3.80δ99(xm) for the ZPG case.

The grid resolutions are also presented in table 1. The grid spacings in

the streamwise (∆x) and spanwise directions (∆z) are constant. The small-

est wall normal grid spacing is located at the wall (∆ywall), and increases

monotonically to the maximum wall normal grid spacing located at the farfield

boundary (∆y∞). These grid spacings are non-dimensionalised by δ99(xm)

and also the viscous length scale at the mid-point of the domain of interest,

l+(xm) ≡ ν/uτ (xm), where uτ ≡
√

τw/ρ is the friction velocity, and τw the

mean shear stress at the wall. In both simulations the Courant number is set to

unity. The APG one-point statistics were accumulated over 884δ1(xm)/Ue(xm)

eddy-turnover times. The ZPG one-point statistics were accumulated over

602δ1(xm)/Ue(xm) eddy-turnover times, and serve mainly as a point of com-

parison to the APG results.

2.3. Flow characterisation

The streamwise domain of interest (DoI) in the present study is from x =

2000δ1(x0) to x = 3000δ1(x0), as this range is shown to be self-similar for

the APG case in section 3. As outlined in table 1, this streamwise domain

corresponds to a Reynolds number range of Reδ2 = 2500 to 3300 for the ZPG

TBL, and from Reδ2 = 3500 to 4800 for the APG TBL. The streamwise extent

of this domain (LDoI = 1000δ1(x0)) is equivalent to 20 local boundary layer

heights (δ99(xm)) for the ZPG and 13 for the APG TBL, again as outlined in

table 1.

The ZPG and APG boundary layer properties are now characterised within

this domain of interest. We first compare the integral length scales of the two

boundary layers. The displacement (δ1) and momentum thicknesses (δ2), as

defined in (2) and (3) respectively, are illustrated in Fig. 2(a). Both of these

length scales are larger in the APG TBL compared to the ZPG TBL, indicating

that the boundary layer in the APG flow expands in the streamwise direction

more rapidly than the ZPG case. The shape factor H = δ1/δ2 is illustrated in
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Fig. 2(b), and changes by less than 2% over the domain of interest. The APG

TBL is decelerated via the BC as illustrated in Fig. 2(c), where the maximum

velocity along the profile (Ue) decreases with x. The expansion of the boundary

layer coincides with a reduction of the mean wall shear stress (τw). In Fig. 2(d),

τw of the APG case is less than that of ZPG TBL, as the former further ex-

pands as a result of the pressure gradient, thus reducing the mean gradient

at the wall. The effect of the boundary layer expansion is also evident in the

reduced skin friction coefficient (Cf = 2τw/U
2
e ) illustrated in Fig. 2(e), which

is the wall shear stress nondimensionalised by the local reference velocity. The

non-dimensionalised pressure gradient parameter, β = δ1(∂xPe)/τw, quantifies

the strength of the pressure gradient relative to the wall shear stress, and is

illustrated in Fig. 2(f). The farfield pressure gradient, ∂xPe, is evaluated at δ,

and is largely independent of y for y ≥ δ. The parameter β is nominally 1 with

a variability of ±2% of this value over the domain of interest.

3. Conditions for self-similarity

In this section we derive the conditions for self-similarity, and evaluate these

conditions for the APG and ZPG TBL DNS. To achieve a self-similar boundary

layer there are various quantities that must be independent of x. These quanti-

ties are derived from first principles following the ideas and analysis of [2, 4, 11],

which are then evaluated for the present data. We start with the Reynolds av-

eraged Navier-Stokes continuity and streamwise momentum equations specific

for boundary layers given by

∂x〈U〉+ ∂y〈V 〉 = 0 , and (5)

〈U〉∂x〈U〉+ 〈V 〉∂y〈U〉 = Ue∂xUe

+ ∂x〈vv〉 − ∂x〈uu〉 − ∂y〈uv〉+ ν∂y∂y〈U〉 , (6)

respectively, where the farfield pressure gradient has been replaced using the

Bernoulli equality ∂xPe = −ρUe∂xUe. A derivation of these equations from

the complete instantaneous Navier-Stokes can be found in [40]. The following
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general scaling for the mean field and Reynolds stresses is adopted with

〈U〉(x, y) = Ue(x) + U0(x) f(ζ) , (7)

〈uv〉(x, y) = −Ruv(x) ruv(ζ) , (8)

〈uu〉(x, y) = Ruu(x) ruu(ζ) , (9)

〈vv〉(x, y) = Rvv(x) rvv(ζ) , and (10)

ζ = y/L0(x) , where (11)

L0(x) ≡ δ1(x)Ue(x)/U0(x) . (12)

The velocity scale, U0, is used to nondimensionalise the velocity deficit. Recall

Ue is the maximum velocity along the profile, and δ1 is the displacement thick-

ness. By substituting (7) into (2), one can then show that L0 is defined in (12)

such that

∫ δ/L0

0

f(ζ) dζ = −1 . (13)

Likewise the integrals from ζ = 0 to ζ = δ/L0 of the similarity functions for

the Reynolds stresses ruv(ζ), ruu(ζ) and rvv(ζ) are all defined to be equal to

1. This means the functions Ruv(x), Ruu(x), and Rvv(x) can be determined at

each x position from the integrals in the ζ direction of −〈uv〉(x, y), 〈uu〉(x, y)

and 〈vv〉(x, y), respectively.

Substituting (7) into the continuity equation (5), applying the chain rule and

integration by parts, we get the following expression for the mean wall normal

velocity

〈V 〉(x, y) = −ζL0∂xUe − F∂x (U0L0) + fζU0∂xL0 , with (14)

F (ζ) =

∫ ζ

0

f(ζ̃) dζ̃ . (15)

By substituting (7) to (10) into the momentum equation (6), along with (14)

for 〈V 〉, and grouping like terms produces

[U0∂xU0] f
2 + [U0∂xUe + Ue∂xU0] f

− [U0Ue/L1 + U0∂xUe] ζf
′ −

[

U2
0 /L1 + U0∂xU0

]

Ff ′
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= − [Rvv/L1] r
′

vvζ + [Ruu/L1] r
′

uuζ + [Ruv/L0] r
′

uv

+ [∂xRvv] rvv − [∂xRuu] ruu +
[

νU0/L
2
0

]

f ′′ , (16)

where L1 = L−1
0 ∂xL0, and the superscript ′ denotes ∂/∂ζ. The terms in the

square brackets in (16) are only a function of x, and the remaining terms are

only functions of ζ.

For a boundary layer to be self-similar each of the terms in the square brack-

ets of (16) must have the same proportionality with x. By inspection, the first

three terms in (16) imply that U0∂xU0 ∝ U0∂xUe ∝ Ue∂xU0, which can only be

satisfied if

U0 = KUe , (17)

where K is an arbitrary constant. This simplifies the definition of the length

scale in (12) to L0 = δ1Ue/U0 = δ1/K. Substituting in these relationships for

Ue and L0 into (16) and dividing through by −U2
0 (∂xδ1)/δ1 produces

2

K
Λf + Λf2 −

1

K
[Λ− 1] ζf ′ − [Λ− 1]Ff ′ = Cvvr

′

vvζ − Cuur
′

uuζ −KCuvr
′

uv

− Dvvrvv +Duuruu −K2Cνf
′′ , where (18)

Cuu = Ruu/U
2
0 , (19)

Cvv = Rvv/U
2
0 , (20)

Cuv = Ruv/
(

U2
0∂xδ1

)

, (21)

Duu = ∂xRuuδ1/
(

U2
0∂xδ1

)

, (22)

Dvv = ∂xRvvδ1/
(

U2
0∂xδ1

)

, (23)

Cν = −ν/ (U0δ1∂xδ1) , and (24)

Λ = −δ1U0∂xU0/
(

U2
0∂xδ1

)

= −δ1Ue∂xUe/
(

U2
e ∂xδ1

)

= δ1∂xPe/
(

ρU2
e ∂xδ1

)

= (Up/Ue)
2
/(∂xδ1) , (25)

are constants independent of x for self-similar TBL. The pressure velocity Up =
√

(∂xPe)δ1/ρ [3], and Λ is as defined in [11]. The above scaling is derived

specifically for self-similar TBL. An alternate scaling was derived in [14] derived
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with application to non-self-similar flows, which can be recovered from the above

analysis if one sets K = δ1/δ [41].

It can also be shown that if Λ, Cuu and Cvv are independent of x, then Duu

and Dvv must also be independent of x. There are, therefore, only five unique

coefficients that need to be independent of x to ensure self-similarity, which are

Λ, Cuv, Cuu, Cvv and Cν . The Λ parameter quantifies the self-similarity of the

pressure gradient term, which has already been demonstrated via the related β

parameter in Fig. 2(f). The remaining coefficients are evaluated for the APG

and ZPG cases.

The Cuu coefficients are illustrated in Fig. 3(a), and are found to be relatively

constant over the domain of interest, which indicates that the profiles of 〈uu〉

are self-similar. Likewise the constant Cvv coefficients illustrated in Fig. 3(b)

indicates that the 〈vv〉 collapse, and the constant Cuv coefficients in Fig. 3(c)

indicate that the 〈uv〉 profiles also collapse. In fact the only term that is a strong

function of x is Cν , which measures the self-similarity of the viscous term. The

Cν coefficient of the APG case is a weaker function of x as compared to that of

the ZPG TBL. How well the statistical profiles at different streamwise positions

collapse will be demonstrated in the following section.

4. Scaling of the statistical profiles

Mean streamwise velocity deficit profiles (Ue − 〈U〉) are now presented at

the streamwise locations indicated by the arrows in Fig. 3(a). In Fig. 4(a) the

deficit profiles are non-dimensionalised by the friction velocity (uτ ) and plotted

against y/δ99 as per the scaling adopted in [24]. The dots in this figure represent

results from the previous ZPG DNS of [42], which agree with the present ZPG

simulation. When scaled by uτ , the non-dimensional velocity deficit profiles

near the wall increase in the downstream direction - indicated by the arrow -

as uτ decreases. In Fig. 4(b) the profiles are illustrated scaled by Ue and δ1, in

line with the theory in the previous section. The dashed black line in the latter

figures represents the streamwise average in scaled coordinates.
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As undertaken for the mean velocity deficit profiles, the Reynolds stresses

are now presented scaled on the basis of initially the wall shear stress and then

on the basis of the outer flow (or effectively the pressure gradient). Under

the former scaling the Reynolds stress profiles are nondimensionalised using a

velocity scale of uτ and the viscous length scale of ν/uτ . Under the latter

scaling the pertinent velocity and length scales are again Ue and δ1, respectively.

Profiles of 〈uu〉 are plotted in viscous scaling in Fig. 5(a), which again increase as

uτ decreases in the downstream direction. A second outer peak is also evident.

Similar observations are also made concerning 〈vv〉, 〈ww〉, and 〈uv〉, plotted

under viscous scaling in Fig. 5(c), Fig. 6(a), and Fig. 6(c) respectively. All of

these Reynolds stresses increase in magnitude as uτ decreases in the downstream

direction, with a prominent second outer peak located between y = δ1 and

y = 1.2δ1. The profiles collapse for all of the streamwise stations when plotted in

outer scaling as illustrated for 〈uu〉, 〈vv〉, 〈ww〉 and 〈uv〉 in Fig. 5(b), Fig. 5(d),

Fig. 6(b), and Fig. 6(d) respectively.

In summary, despite Cν not being strictly constant throughout the domain,

the mean velocity and Reynolds stresses profiles exhibit good collapse in outer

scaling. This is because as the adverse pressure gradient increases, the dominant

source of shear shifts from being the shear imparted by the wall, to the shear

being imparted by the far field pressure gradient. The wall normal domain in

which the wall shear stress (and hence Cf ) is significant decreases with increasing

APG.

The kinetic energy budget in the APG and ZPG TBL are also compared, but

only in outer scaling. For flows in statistical steady state (i.e. time derivatives

are zero) the kinetic energy budget is given by

0 = M+ Z + T + P +D + V , (26)

where M is the mean convection, Z pressure transport, T turbulent transport,

P production, D is the pseudo-dissipation, and V the viscous diffusion. Each of

these terms are defined as

M = −〈Uj〉∂xj
E , (27)

13



Z = −∂xi
〈pui〉/ρ , (28)

T = −∂xj
〈uiuiuj〉/2, (29)

P = −〈uiuj〉 ∂xj
〈Ui〉 , (30)

D = −ν
〈

(∂xj
ui) (∂xj

ui)
〉

, and (31)

V = = ν∂xj
∂xj

E , where (32)

E = 〈ukuk〉/2 , (33)

is the kinetic energy. As was done for the mean and Reynolds stress profiles,

each of the terms in the kinetic energy budget are time and spanwise averaged,

and then scaled using Ue and δ1 as the pertinent velocity and length scale

respectively. Within the domain of interest (2000δ1(x0) ≤ x ≤ 3000δ1(x0))

these profiles are additionally streamwise averaged in the scaled coordinates.

These streamwise averaged profiles are presented in Fig. 7(a) for the ZPG TBL

and Fig. 7(b) for the APG TBL. The magnitudes and characteristics of the

kinetic energy budgets are similar in both cases. However, there is a clear

difference in the production and dissipation terms. The APG TBL has an outer

peak in production, which the ZPG TBL does not. This outer production peak

in the APG case is due to the additional mean shear throughout the boundary

layer as a consequence of the pressure gradient. The only source of shear in the

ZPG TBL is due to the presence of the wall. The kinetic energy produced in

the outer flow is also locally dissipated in the APG flow as evidenced by the

presence of the outer peak in the D profile.

The production to dissipation ratio is important in the context of turbu-

lence modelling, in particular for Reynolds Averaged Navier-Stokes (RANS)

type models. The present APG TBL data set could be used for the evaluation

of RANS models in non-zero pressure gradient environments.

5. Two-point correlations

Finally two-point correlations are calculated in the spanwise-normal plane

to give an indication of the extent to which the fluctuations are correlated in
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space. The two-point correlation function is defined as

Ruu(x, y; x̂, ŷ) =
〈u(x, y) u(x̂, ŷ)〉

√

〈u2(x, y)〉 〈u2(x̂, ŷ)〉
, (34)

where x̂ and ŷ are the reference locations with which the correlation is made,

and the averaging is done over the spanwise direction and time. There are

analogous two-point correlation function definitions for Rvv and Rww.

In the analysis to follow x̂ = 2500δ1(x0), which is in the middle of the domain

of interest, and the wall normal reference position is located at ŷ = δ1(x̂). We se-

lect this wall normal position as it is in the vicinity of the maximum fluctuations

of all of the Reynolds stresses. The correlation fields for Ruu, Rvv and Rww are

illustrated in Fig. 8(a), Fig. 8(b) and Fig. 8(c) respectively. The Ruu correlation

is elliptic in shape, with the major axis tilted upwards at an approximate angle

of 14◦ to the streamwise direction. The integral in the streamwise/wall-normal

plane of the correlation field for Ruu > 0.07, is 90% of the integral of the entire

positive correlation field (i.e. for Ruu > 0). We use this contour level of 0.07 to

describe the length of the structures in each of the following correlation fields.

For Ruu, the correlation is greater than 0.07 to within 6δ1(xm) in the upstream

and downstream directions. The positive correlation of the Rvv is more tightly

packed and has a correlation higher than 0.07 to within 1.5δ1(xm) either side of

the reference location, and is not tilting toward any particular direction. Note,

the integral of Rvv > 0.07 represents 52% of the integrated positive correlation

field. The Rww field is slanting upward with an angle of approximately 26◦,

which is almost double that of the Ruu tilt angle. The correlation is greater

than 0.07 to within 0.5δ1(xm) either side of the reference location in the di-

rection of the minor axis of the ellipse, and surrounded by negative correlation.

The integral of Rww > 0.07 represents 80% of the integrated positive correlation

field. In general the streamwise extent to which there is positive correlations in

the present APG flow, is shorter than in the related ZPG DNS of [43], which

has a similar maximum Reynolds number of Reδ2 = 6650. This indicates that

the eddies in ZPG flows are more elongated than those in the present APG

flow, which is also consistent with the findings of a separated TBL subjected
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to a stronger APG in [44]. The interested reader can find associated two-point

correlation plots for ZPG TBL in [37, 43], and for and non-self-similar APG

flows in [44].

6. Concluding remarks

An adverse pressure gradient turbulent boundary layer was generated via

direct numerical simulation with an appropriate farfield boundary condition

to generate a self-similar flow. The coefficients quantifying the extent of self-

similarity are relatively constant for the adverse pressure gradient case over a

momentum thickness based Reynolds number range of Reδ2 = 3500 to 4800,

which is equivalent to a range of 13 local boundary layer thicknesses, or 56 dis-

placement thicknesses. Within this domain, mean velocity deficit and Reynolds

stress profiles collapse under outer scaling. The Reynolds stresses also exhibit a

second outer peak associated with the shear distributed throughout the bound-

ary layer as a consequence of the application of the pressure gradient. When

scaled in viscous units the Reynolds stresses in the APG TBL are significantly

stronger than in the ZPG flow. The turbulent kinetic energy budget profiles

also illustrate a second outer peak in the production and dissipation of the APG

TBL. This again indicates that the shear distributed throughout the boundary

layer generates additional fluctuations further from the wall, which are locally

dissipated. Finally two-point correlations of the velocity field illustrate that sta-

tistical features are shorter in the streamwise direction than comparable ZPG

TBL.
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Table 1: Numerical details of the APG and ZPG TBL DNS: number of points in the streamwise

(Nx), wall-normal (Ny) and spanwise (Nz) directions; domain size Lx, Ly and Lz in these

respective directions non-dimensionalised by the boundary layer thickness (δ99) at the inlet

(x0), and at the centre of the domain of interest (xm = 2500δ1(x0)); uniform streamwise (∆x)

and spanwise (∆z) grid spacing and wall normal grid spacing at the wall (∆ywall) and at the

farfield boundary (∆y∞) non-dimensionalised by both δ99(xm) and the viscous length scale

l+(xm) ≡ ν/uτ (xm); momentum thickness based Reynolds number (Reδ2 ) both across the

entire domain, and within the domain of interest (DoI); streamwise extent of the domain of

interest (LDoI) in terms of the local δ99(xm), displacement thickness (δ1(xm)) and momentum

thickness (δ2(xm)).

ZPG APG

Nx ×Ny ×Nz 8193× 315× 1362 8193× 500× 1362
(

Lx

δ99(x0)
,

Ly

δ99(x0)
, Lz

δ99(x0)

)

(850, 40.2, 142) (850, 73.5, 142)
(

Lx

δ99(xm) ,
Ly

δ99(xm) ,
Lz

δ99(xm)

)

(80.4, 3.80, 13.4) (54.6, 4.72, 9.12)
(

∆x
δ99(xm) ,

∆ywall

δ99(xm) ,
∆y∞

δ99(xm) ,
∆z

δ99(xm)

)

(9.82, 0.257, 11.3, 9.82)× 10−3 (6.67, 0.175, 16.6, 6.67)× 10−3

(

∆x
l+(xm) ,

∆ywall

l+(xm) ,
∆y∞

l+(xm) ,
∆z

l+(xm)

)

(10.7, 0.281, 18.2, 10.7) (6.08, 0.160, 10.3, 6.08)

Reδ2 range 300 → 4100 300 → 6100

Reδ2 range in DoI 2500 → 3300 3500 → 4800
(

LDoI

δ99(xm) ,
LDoI

δ1(xm) ,
LDoI

δ2(xm)

)

(20, 113, 159) (13, 56, 87)
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Figure 1: Farfield wall normal velocity boundary condition in the APG (red line) and ZPG

(green line) DNS. The following labels refer specifically to the APG TBL DNS: xs - position

prior to which BC is governed by equation (1); xf - position after which BC is governed by

equation (4); xb - position at which blowing into the computational domain is initiated.

23



(a) (b)

 0

 5

 10

 15

 20

 25

 30

 2000  2250  2500  2750  3000

δ 1
/
δ 1
(x

0
),
δ 2
/
δ 1
(x

0
)

δ1 APG δ2 APG

δ1 ZPG δ2 ZPG

x/δ1(x0)

 0

 0.5

 1

 1.5

 2

 2000  2250  2500  2750  3000

APG ZPG

H

x/δ1(x0)

(c) (d)

 0

 0.2

 0.4

 0.6

 0.8

 1

 2000  2250  2500  2750  3000

APG ZPG

U
e
/
U
e
(x

0
)

x/δ1(x0)

 0

 0.5

 1

 1.5

 2

 2000  2250  2500  2750  3000

APG ZPG

τ w
×
1
0
3

x/δ1(x0)

(e) (f)

 0

 1

 2

 3

 4

 2000  2250  2500  2750  3000

APG ZPG

C
f
×
1
0
3

x/δ1(x0)

 0

 0.2

 0.4

 0.6

 0.8

 1

 2000  2250  2500  2750  3000

APG ZPG

β

x/δ1(x0)

Figure 2: Boundary layer properties of the APG and ZPG DNS: (a) displacement (δ1) and

momentum (δ2) thicknesses; (b) shape factor, H = δ1/δ2; (c) outer reference velocity, Ue; (d)

wall shear stress, τw; and (e) skin friction coefficient, Cf = 2τw/U2
e ; and (f) pressure gradient

parameter, β = δ1(∂xPe)/τw .
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Figure 3: Coefficients to assess the self-similarity of the APG and ZPG TBL DNS on the basis

of: (a) Cuu, with arrows indicating the positions of the APG TBL velocity profiles illustrated

in Fig. 4, Fig. 5 and Fig. 6; (b) Cvv; (c) Cuv;and (d) Cν .
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Figure 4: Mean velocity deficit profiles (Ue−〈U〉) nondimensionalised by: (a) friction velocity,

uτ , and boundary layer thickness, δ99; and (b) reference outer velocity, Ue, and displacement

thickness, δ1. ZPG TBL DNS of [42] - blue dots; ZPG TBL DNS current simulation - green

line; APG TBL DNS from current simulation at different streamwise locations - red lines;

streamwise averaged scaled profiles - dashed black lines. Positions of the APG TBL profiles

are illustrated in Fig. 3(a), with arrows in left column indicating the direction of increasing x

position.
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Figure 5: Reynolds stress profiles: (a) 〈uu〉 in viscous scaling nondimensionalised by friction

velocity, uτ , and viscous length scale, ν/uτ ; (b) 〈uu〉 in outer scaling nondimensionalised by

reference outer velocity, Ue, and displacement thickness, δ1; (c) 〈vv〉 in viscous scaling; (d)

〈vv〉 in outer scaling; Refer to caption of Fig. 4 for line correspondence.
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Figure 6: Reynolds stress profiles: (a) 〈ww〉 in viscous scaling; (b) 〈ww〉 in outer scaling;

(c) 〈uv〉 in viscous scaling; and (d) 〈uv〉 in outer scaling. Refer to caption of Fig. 4 for line

correspondence.

28



(a) (b)

-4

-2

 0

 2

 4

 0.01  0.1  1  10

Z
P
G

b
u
d
g
et
s×

1
0
3

y/δ1

-4

-2

 0

 2

 4

 0.001  0.01  0.1  1  10

A
P
G

b
u
d
g
et
s×

1
0
3

y/δ1

R

V

M

T

Z

D

P

Figure 7: Streamwise averaged budget profiles nondimensionalised by Ue and δ1 for: (a) ZPG

TBL; and (b) APG TBL. The mathematical definition of the mean convection (M), pressure

transport (Z), turbulent transport (T ), production (P), pseudo-dissipation (D), and viscous

diffusion (V), are all defined in equations (27) to (32) respectively. R is the residual given by

the negative sum of all of the terms in the kinetic energy budget.
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Figure 8: Two-point spatial correlation coefficients centred at x = 5000δ1(x0) (centre of

the domain of interest) and y = δ1: (a) Ruu; (b) Rvv; and (c) Rww , with the colour bar

representative for all figures. The horizontal and vertical axes are to scale.
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