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Abstract 

Methodologies for the experimental measurement of three-
dimensional instantaneous density fluctuations via tomographic 
background-oriented schlieren (TBOS) were assessed using 
synthetic background images, corresponding to experimental 
measurements of a heated turbulent jet. Filtered back projection 
and iterative algebraic reconstruction algorithms were explored. 
Results show a superior reconstruction when the solutions from 
filtered back projection were used as an initial solution to a 
masked and windowed iterative algebraic reconstruction. The 
influence of the number of cameras and the wavelength of 
density fluctuations are both investigated. 

1  Introduction 

To understand the structure of complex convective flows, it is 
essential to capture not only the velocity field but also the 
corresponding instantaneous density or temperature fields. 
Laser based optical measurement techniques, such as 
holographic or tomographic particle image velocimetry (PIV), 
are capable of quantifying instantaneous three-component 
three-dimensional (3C-3D) velocity fields [1,2], however the 
robust 3D measurement of density is less common. One means 
of quantifying the density of a flow is via an optical 
simplification to schlieren, known as background-oriented 
schlieren [3], which provides a measure of the integrated 
density gradients through a flow. To obtain the density 
gradients at discrete locations in the flow and hence enable the 
calculation of the density field, the distribution of density 
gradients along the integrated measurement must be determined. 
This represents an inverse Radon transform and if multiple 
projections of the integrated density gradients are available, 
corresponds to a tomographic reconstruction of the density 
gradient fields. 

A handful of research groups report instantaneous 3D density 
measurements based on tomographic background-oriented 
schlieren (TBOS) [4,5], most using either a filtered back 
projection (FBP) [6] or an iterative algebraic reconstruction 
technique (ART) [7] to reconstruct the gradients of refractive 
index, which are related to the density gradients by the 
Gladstone-Dale relation. The validation of these approaches has 
generally been based on comparison with qualitative schlieren 

measurements, comparison of mean temperature fields or via 
the generation of synthetic background displacements based on 
density field data computed by Reynolds Averaged Navier-
Stokes (RANS) simulations of specific flows. 

In this paper we present and compare both FBP, ART and 
hybrid reconstruction techniques, combined with a random 
access iterative windowed and masked corrections, in order to 
enable the reconstruction of instantaneous 3D turbulent multi-
scale density fields from simultaneous background-oriented 
schlieren projections. The ability of the TBOS technique to 
reconstruct these density fluctuations is assessed as a function 
of camera number and wavelength in order to aide in the 
planning of experimental measurements.  

2  Principles of Background-Oriented     
   Schlieren  
Background-oriented schlieren (BOS) operates on the 
principles of a schlieren method and the relationship between 
the density of a fluid ρ and its refractive index n, as given by 
the Gladstone-Dale equation:  

                        (1) 

where G(λ) represents the Gladstone-Dale constant as a 
function of the wavelength λ of the incident light. If we 
consider the path followed by a light ray from a point in the 
image plane of a camera Xo to a point in the background pattern 
Po (see Fig. 1), the variation in the refractive index along this 
path will result in the deflection of this ray due to refraction. If 
the volume is small with respect to the distance to the 
background ZD then it can be assumed that the path followed by 
the ray remains unchanged and the refracted ray can be 
approximated by a small deflection of angle ε, with respect to 
the incident ray. If a background is placed behind the 
measurement volume then this deflection results in an apparent 
shift in the imaged background Xo + ∆X, which is related to the 
deflection and optical setup as: 

        
       (2) 

where f is the focal length of the camera lens and ZA the 
distance from the focal point to the centre of the measurement 
volume. 
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the general performance of these TBOS techniques, cannot be easily extrapolated to different flows and fail to
capture small scale turbulent fluctuations. For instance the reconstruction of 3D density fields from 12 camera
coplanar synthetic BOS images of a double stream nozzle jet presented by Nicolas et al. (2016) indicate that
while the reconstruction performs well across the laminar core in the immediate vicinity of the nozzle exit,
the magnitude of density variations in the turbulent flow downstream of the nozzle become well resolved.

In this paper we present a algebraic reconstruction based technique consisting with a random access iter-
ative windowed and filtered correction combined with a Poisson solver in order to enable the reconstruction
of instantaneous 3D turbulent multi-scale density fields from simultaneous background-oriented schlieren
projections. A raytracing method, combined with Snell’s law is then used to generate synthetic background
images associated with a Gaussian density field upon which density fluctuations are imposed with at varying
wavelengths. The ability of the TBOS technique to reconstruct these density fluctuations is assessed as a func-
tion of camera number, displacement resolution and wavelength and represented in a non-dimensional form
in order to assist in the planning of experimental measurements and aid in the comparison of reconstruction
approaches.

2 Principles of Background-Oriented Schlieren

In order to provide a complete discussion of the current implementation of the TBOS and it’s performance it is
necessary to provide a brief summary of the working principles and the influence of the multiple experimental
parameters that form the final reconstruction. BOS operates on the principles of a schlieren method and the
relationship between the density r and the refractive index n of a fluid, as given by the Gladstone-Dale
equation:

n�1 = G(l )r, (1)

where G(l ) represented the Gladstone-Dale constant as a function of the wavelength l of the incident light.
If for the moment we neglect the effect of finite aperture and scattering of light and assume we can present
the imaging process via an ideal pinhole model and consider the path followed by a light ray from a point in
the image plane of a camera Yo to a point in the background pattern Po (see figure 1), then variation in the
refraction index along this path will result in the deflection of this ray due to refraction. In reality changes in
refractive index will continuously change the direction of a ray and the path with which it propagate through a
measurement volume, however if the changes in refractive index and weak enough and the distance traverse by
the ray through the volume is small with respect to the distance to the background ZD then it can be assumed
that the path followed by the ray remains unchanged and the refracted ray can be can be approximated as a
undergoing a small deflection of angle ex, with respect to the incident ray. The intersection of this refracted ray
with the background pattern at a point Pre f correspond to the image location Yo+DY is no refraction occurred,
hence to the camera the refraction of this ray will appear as an apparent displacement of the background image
from the point Yo with respect to the a reference background image, generally taken in the absence of flow
when the fluid in the volume can be assumed to be of constant refractive index. If the background is chosen
such that the camera records a high spatial frequency image similar to a particle image velocimetry (PIV)
or laser speckle pattern, then the local displacement of this background in the image plan can determined
to sub-pixel accuracy (⇡ 0.1 pixel) using standard digital cross-correlation (Willert and Gharib, 1991) and
multi-grid (Soria, 1996) PIV algorithms.

From the geometry of this setup as assuming thin lens equations and that the background is in focus,
following Richard and Raffel (2001), the resulting displacement DX in the image plane is related to the
deflection angle e as:

DX = f
✓

ZD

ZD +ZA � f

◆
e, (2)

where f is the focal length of the camera lens and ZA the distance from the focal point to the centre of the mea-
surement volume. Naturally, increase the distance between the volume and the background will increase the
displacement of the ray, however it will also reduce the magnification of the background and the correspond-
ing displacement in the image plane. The maximum displacement will be obtained when the lens is as close
to the measurement volume as possible and the background is as far as possible, approaching a maximum
displacement of DX = f e for a given deflection.
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Figure 1: Schematic of the optical setup and parameters of BOS 

For small angles, following the parallax assumption, the 
relative deflection associated with the diffraction of the ray 
relative to its incident angle can be approximated by:  

              
(3)

 

where x′ represents the axis of the ray and y′ and z′ represent 
two axes orthogonal to the ray. The deflection angles between 
the ray x′ = IoPo and r = IoPref can be determined by projecting 
rays from a point in the image Xo and from the point 
corresponding to the deflection of the background image Xo + 
∆X, which can be determined by standard cross-correlation 
particle image velocimetry algorithms. Assuming a small angle 
approximation, the deflections angles are given by the dot 
product of the local incident ray axes and the refracted ray r: 

  
        (4)

 

3  Tomographic BOS Reconstruction  

In the present paper, tomographic reconstruction of the 
refractive index gradient fields ∂n/∂xi (x,y,z) that correspond to 
the measured background displacements and associated ray 
deflections will be performed using either Fourier slice based 
filtered back projection (FBP) [6], iterative algebraic 
reconstruction techniques (ART) [7] or a combination of both. 

3.1  Filtered Back Projection (FBP) 

In the present implementation the reconstruction of each 
refractive index gradient is performed independently based on 
sinograms that represent the sum of each component of ∑ray∇n 
along the camera’s axis at each position along the width of each 
camera. The sum of the gradients at each position in the image 
plane are determined by solving the following system of 
equations:  

         (5)
 

where no is the refractive index outside the measurement 
volume and ∆x is the voxel width. Reconstruction is performed 
following the common practice of taking the inverse Radon 
transform of ramp filtered sinograms. A circular reconstruction 
domain is applied which corresponds to the common view of 
all cameras, outside which the density gradients are set to zero. 

 

3.2  Algebraic Reconstruction Technique (ART) 

The algebraic density gradient reconstruction is based on 
representing the defection angles εx′i, εy′i, εz′i for the i-th ray as a 
projection of the gradients of the refractive index field ∇n 
where the contribution of each j-th point in the field is 
represented by a weighting wij. From equations (3) and (4) the 
contribution to the ray deflections can be expressed as: 

        

(6)

 

where k denotes the iteration of the reconstruction and Li is the 
length of the path followed by the ray through the volume. A 
solution to the gradient field is computed by iteratively 
correcting a previous estimation of the field in order to 
minimise the difference between the projected deflection angles 
of each ray as calculated by equation (6) and the deflection 
angles estimated from the measured background displacements, 
equation (4). The required correction for each gradient 
component is determined by solving the following series of 
equations, 

    (7) 

where λj is a relaxation parameter set to 2.0 through this paper. 

3.3  Calculation of the Refractive Index Field 

The refractive index fields n(x, y, z) can be calculated from 
their reconstructed gradients by solving the Poisson equation: 

     
(8) 

The right-hand side is populated by taking a 2nd order central 
difference of the reconstructed density gradients with the 
solution obtained via an iterative successive over relaxation 
algorithm (SOR). In the present case the solution was 
terminated once the field had converged to 10-16, to remove any 
influence of the convergence of the SOR algorithm on the 
assessment of the reconstruction methodology. As is often done 
in PIV a lower order discretisation is to reduce the influence of 
measurement and reconstruction noise associated with the 
gradient fields.  

4  Generation of Synthetic Backgrounds  

To assess the performance of the proposed reconstruction 
methods synthetic BOS images were created by tracing rays 
from each camera through a known refractive index 
distribution using Snell’s law. A synthetic field consisting of a 
Gaussian air jet with a peak change in refractive index of ∆np = 
1.5×10−4 from n0 = 1.0 was used, corresponding to a centreline 
temperature of approximately 368◦C at standard atmospheric 
conditions, and a standard deviation σ = 9 voxels. The 
measurement domain of 65×3×65 voxels (43×2×43 mm) was 
sized based on a jet diameter of 10 mm and the use of a 1 
Mpixel camera with a pixel size of 3.75×3.75 µm2 equipped 
with f = 25 mm focal length lens with an aperture of f/22. The 
optical centre of the camera was positioned 275 mm from the 
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Fig. 3 Schematic of the pinhole camera model and coordinates systems

The correspondence between a point in the volume (x,y,z) and a location of the imaging plane, (X ,Y ) in
pixels, can be represented by a pinhole model as follows:
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where f is the focal length of the lens, dpx is the image plane pixel size, OX and OY are the centre of the image
plane in pixels, a , b and g are rotations of the camera with respect to the global z, y and z axes, respectively
and c is the vector representing the optical centre of the camera relative to the origin of the measurement
volume (see figure 3). In practice these matrices are populated through a calibration procedure as typically
used in stereoscopic and tomographic PIV. A ray between the optical centre of the camera through a given
point on the image plane can similarly be computed from:
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5 , (7)

where l represents the relative position along this ray. This enables the incident angle and the path of the
ray through the volume to be determine. For small angles, following the parallax assumption, the relative
deflection associated with the diffraction of the the ray relative to it’s incident angle can be approximated by:

ez0 =
1
no

Z ∂n
∂y0

dx0, (8)

ey0 =
1
no

Z ∂n
∂ z0

dx0, (9)

where x0 represent the axis of the ray and y0 and z0 represent two axes orthogonal to the ray.

3 Implementation of a Tomographic BOS reconstruction

In order to perform a tomographic BOS reconstruction from potentially arbitrarily arranged cameras, it is
necessary to relate the background displacements computed in each camera to the density gradients in the
global coordinate system. The global position and orientation of each camera is determined via a standard
calibration process, through which the pinhole matrices (equations 6) are populated. The displacement of the
background in the image plane of each camera is calculated by dividing the image into a series of interrogation
windows, the mean displacement over which is calculated using a multi-grid PIV cross-correlation algorithm
with a Gaussian sub-pixel fit (Soria, 1996).

5

Deflection of the light ray from the centre of each interrogation window, Xo, is determined by using the
camera model (equation 7) to project the non-refracted ray from the the image plane to the corresponding point
on the background Po. The point where this ray crosses the centre of the measurement volume is denoted by
Io. This ray is represented by a vector x0 = IoPo in global coordinates, with local axes orthogonal to this ray
denoted as y0 and z0. A second ray is projected from the point in the image plane which represent the centre
of the window displaced by the calculated background shift Xo +DX to the background denoted by Pre f .
The deflection of the non-refracted ray is therefore the angle between the vector x0 and the vector r = IoPref.
Remaining consistent with our previous small angle approximations the estimated angles ex0 ,ey0 and ez0 about
the local axes becomes:

ex0 = r ·x0, (10)
ey0 = r ·y0, (11)
ez0 = r · z0. (12)

Tomographic reconstruction of the refractive index gradient fields ∂n
∂x (x,y,z),

∂n
∂y (x,y,z) and ∂n

∂ z (x,y,z)
fields that correspond to the measured background displacements and associated ray deflections can broadly
be performed using either Fourier slice based filtered back projection (FBP) (Kak and Slaney, 2001) or itera-
tive algebraic reconstruction techniques (ART) (Herman and Lent, 1976). FBP is a popular technique in the
medical field where a single sensor is often rotated in single plane around a stationary object, which allows
the recording and reconstruction of hundreds of slices through a volume. In fluid mechanics the times scales
associated with most flow require the simultaneous recording of projections using individual cameras, which
owing to the cost and need to physically package these systems around experimental facilities, typically limits
the number of projections. ART typically behave better in the case of limited projections and require no fun-
damental restrictions on camera spacing, however their iterative nature makes them far more computationally
expensive. We will consider the use of both methods in this paper.

3.1 Filtered Back Projection

Filtered back projection makes use of the inverse Radon transform to relate a sinogram, representing the sum
of a scalar quanity through a volume along the line of sight of a sensor as a function of the position along
the sensor and the angle of the sensor, to the corresponding distribution of the scalar within the volume (Kak
and Slaney, 2001). Assuming each camera records a parallel projections and the sensor resolution remains
constant across all angles, this transformation can be rapidly performed using 2D Fourier transforms. In the
present implementation the reconstruction of each refractive index gradient is performed independently based
on sinograms that represent the sum of the each component of Âray —n along the camera’s axis at each position
along the width of each camera, with each camera corresponding to a different projection angle. The sum of
the gradients at each position in the image plane are determined by solving the following system of equations:
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where no is the refractive index outside the measurement volume and Dx is the voxel width which is set to
be equal to dIW . Reconstruction is performed following the common practice of taking the inverse Radon
transform of ramp filtered sinograms. A circular reconstruction domain is applied which corresponds to the
common view of all cameras, outside which the density gradients are set to zero.

3.2 Algebraic Reconstruction

Algebraic reconstruction is based on a representing of a series of projections or views of a volume Pi is terms
of a weighted contribution from a discretised point in the volume I j such that the final reconstruction should
satisfy,

Pi = Â
j

wi jI j, (14)
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where wi j is the weighted contribution of the j-th point in the volume to the i-th ray. These algorithms iter-
atively update I j based on the difference between the estimated projections Â j wi jI j and the measured pro-
jections Pi of the volume. In TBOS Pi represents the measured deflections of the refracted light rays, which
we need to formulate in terms of the refractive index gradients. This can be done following equation 9, such
that the deflection of the i-th ray in the local coordinates system that results from the k-th iteration of the
reconstruction of the gradient field in the volume is given by the integral of the weighted dot product of the
vector of the local axis in global coordinates with the gradient vector of the refractive index field —n:

ek
x0i = Li

Â j wi jx0·—nk
j

no Â j wi j
, (15)

ek
y0i = Li

Â j wi jy0·—nk
j

no Â j wi j
, (16)

ek
z0i = Li

Â j wi jz0·—nk
j

no Â j wi j
, (17)

where Li is the length of the path followed by the ray through the measurement volume. As detailed in
Atkinson and Soria (2009), the weighted contribution of each point in the volume to a ray from a given
interrogation window depends on the volume intersection of the voxel and the projection of the window,
which can be approximated by representing the voxel as a sphere of equivalent volume and the projection of
each ray as a cylinder with equivalent cross-sectional area. This allow the contribution to be parameterised in
terms of each radius and the shortest distance between the ray and the centre of each voxel. This volume can
be calculated analytically or can be approximated and more rapidly computed by a linear radial basis:

wi j = max
✓

0,1� b
r

◆
, (18)

where b is the shortest distance between the ray and the centre of the voxel and r is the radius of the voxel.
Using the full analytically derived volume intersection had negligible effect on the reconstruction accuracy
when compared to the radial basis approximation above.

The iterative correction of the velocity gradients at each point in the volume is performed one ray at a time
by relating the difference between the measured ray deflections to the projection, ex0i � ek

x0i, to the required
correction in each of the refractive index gradients components —nk+1

j �—nk
j following:
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, (19)

where l j is a relaxation parameter associated with the reconstruction. This correction is based on a standard
additive ART correction (Herman and Lent, 1976). While multiplicative based reconstruction algorithms have
generally been favoured in limited view tomographic PIV due their lower noise (Atkinson and Soria, 2007),
the reconstruction of density gradients differs from this and standard medical applications since the gradient
is not restricted to a positive quantity and can be present zero projections from a contribution of positive
and negative gradients along a ray. This rules out the use of many reconstruction algorithms which involve
normalisation with denominators that can be zero.

Various methods were explored to improve the reconstruction quality including: random ordering of pro-
jections; Gaussian filtering of the density fields after each iteration with filtering relaxed to zero as final
iteration is approached; simultaneous correction of the volume from all rays using a SART (Andersen and
Kak, 1984); Hamming windowed correction to penalise the generation of artefacts at the boundaries of the
reconstruction, gradual unmasking that restriction correction amplitude below a threshold that tends to zero
in subsequent iterations (Liao, 2007); and using FBP as an initial solution to the iterative ART (Hartmann and
Seume, 2016).

3.3 Calculation of the Refractive Index Field

Refractive index fields n(x,y,z) were calculated from the reconstructed components of —n via solution of the
Poisson equation:

—2n =
∂ 2n
∂x2 +

∂ 2n
∂y2 +

∂ 2n
∂ z2 = q, (20)
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that the deflection of the i-th ray in the local coordinates system that results from the k-th iteration of the
reconstruction of the gradient field in the volume is given by the integral of the weighted dot product of the
vector of the local axis in global coordinates with the gradient vector of the refractive index field —n:
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where Li is the length of the path followed by the ray through the measurement volume. As detailed in
Atkinson and Soria (2009), the weighted contribution of each point in the volume to a ray from a given
interrogation window depends on the volume intersection of the voxel and the projection of the window,
which can be approximated by representing the voxel as a sphere of equivalent volume and the projection of
each ray as a cylinder with equivalent cross-sectional area. This allow the contribution to be parameterised in
terms of each radius and the shortest distance between the ray and the centre of each voxel. This volume can
be calculated analytically or can be approximated and more rapidly computed by a linear radial basis:
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where b is the shortest distance between the ray and the centre of the voxel and r is the radius of the voxel.
Using the full analytically derived volume intersection had negligible effect on the reconstruction accuracy
when compared to the radial basis approximation above.

The iterative correction of the velocity gradients at each point in the volume is performed one ray at a time
by relating the difference between the measured ray deflections to the projection, ex0i � ek

x0i, to the required
correction in each of the refractive index gradients components —nk+1
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where l j is a relaxation parameter associated with the reconstruction. This correction is based on a standard
additive ART correction (Herman and Lent, 1976). While multiplicative based reconstruction algorithms have
generally been favoured in limited view tomographic PIV due their lower noise (Atkinson and Soria, 2007),
the reconstruction of density gradients differs from this and standard medical applications since the gradient
is not restricted to a positive quantity and can be present zero projections from a contribution of positive
and negative gradients along a ray. This rules out the use of many reconstruction algorithms which involve
normalisation with denominators that can be zero.

Various methods were explored to improve the reconstruction quality including: random ordering of pro-
jections; Gaussian filtering of the density fields after each iteration with filtering relaxed to zero as final
iteration is approached; simultaneous correction of the volume from all rays using a SART (Andersen and
Kak, 1984); Hamming windowed correction to penalise the generation of artefacts at the boundaries of the
reconstruction, gradual unmasking that restriction correction amplitude below a threshold that tends to zero
in subsequent iterations (Liao, 2007); and using FBP as an initial solution to the iterative ART (Hartmann and
Seume, 2016).

3.3 Calculation of the Refractive Index Field

Refractive index fields n(x,y,z) were calculated from the reconstructed components of —n via solution of the
Poisson equation:

—2n =
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where l j is a relaxation parameter associated with the reconstruction. This correction is based on a standard
additive ART correction (Herman and Lent, 1976). While multiplicative based reconstruction algorithms have
generally been favoured in limited view tomographic PIV due their lower noise (Atkinson and Soria, 2007),
the reconstruction of density gradients differs from this and standard medical applications since the gradient
is not restricted to a positive quantity and can be present zero projections from a contribution of positive
and negative gradients along a ray. This rules out the use of many reconstruction algorithms which involve
normalisation with denominators that can be zero.
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centre of the volume and 575 mm from the background so that 
an interrogation window of 16 pixels would correspond to 16 
voxels (0.66 mm) when projected to the volume centre and 
remain larger than the circle of confusion associated with the 
lens geometry of the BOS setup (see [8] for a discussion of the 
influence of finite aperture on BOS). 

Synthetic background images were created for different camera 
numbers, with cameras evenly spaced in a 180◦ arc about the 
jet axis in the x-z plane (see Fig. 2). Such a camera 
configuration is relatively practical to setup, lends itself well to 
FBP and results in reconstruction that is almost independent of 
variation in the y−axis. This allows us to perform a more 
efficient comparison of the different reconstruction methods by 
limiting our region of interest to a thin slice normal to the jet 
axis.  

 

Figure 2: Schematic of the synthetic BOS configuration 

To assess the ability of TBOS to resolve instantaneous 
turbulent density fluctuations, the Gaussian refractive index 
distribution was modulated using sinusoids in the x and z 
directions as given by:  

  (9)
 

where λx and λz are wavelengths of density fluctuations, A is the 
amplitude of the modulation, which was set to 0.25 such that 
the field consists of fluctuations up to 25% of the mean value, 
which decay towards the jet boundaries. This is similar to 
passive scalar fluctuations in a fully developed turbulent round 
jet [9]. The maximum background displacements in the image 
plane were 1 pixel.  

5  Results 

To assess the ability of the TBOS algorithms to resolve 
instantaneous density and corresponding refractive index 
fluctuations noiseless background displacement fields were 
generated for arrays of 6 to 22 evenly spaced cameras, with 
fluctuation wavelengths from λx = λy = 4.6 to 32.5 voxels or 
L/14 to L/2 where L is the measurement volume length. 

Simulations showed that ART performed best when iterative 
corrections to the density field were performed by randomly 
sampling rays from each camera, which removes bias to any 
particular image, combined with a masking of the gradient field 
beyond a radius of 30 voxels and imposing a Hamming 
window to the correction, which similarly reduces the 
correction applied to the outer region of the reconstruction 

domain. As shown in Fig. 3, FBP provides a good 
reconstruction of gradients near the centre of the volume but 
also introduces considerable gradients outside the core of the 

 

Figure 3: Contour plots for the reconstructed refractive index 
gradient ∂n/∂x for 14 cameras and λx,y = L/14: (a) synthetic 
field; (b) FBP; (c) ART 20 iteration; and (d) FBP+ART 10 
iterations.  
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Fig. 4 Schematic of the synthetic TBOS setup

5 Results

To assess the ability of a TBOS measurement to accurately resolve instantaneous density and correspond-
ing refractive index fluctuations in a axisymmetric jet, synthetic background images and noiseless perfect
background displacement fields were generates for arrays of 6 to 22 evenly spaced cameras, with fluctuation
wavelengths from lx = ly = 4.6 to 32.5 voxels or L/14 to L/2 where L is the measurement volume length.

An example of the ART reconstruction and influence of a number of different reconstruction enhancement
methodology are shown in figure 5 for 10 cameras with a fluctuation wavelength of L/14 after 20 iterations.
Performing the reconstruction by randomising the order in which each camera was considered and then ran-
domly selecting a ray from each camera significantly accelerated the convergence of the reconstruction when
compared to considering each ray sequential from one camera at a time, yet had negligible effect on the fi-
nal reconstruction when 20 iterations were performed. Subsequent approach retained the random overing of
cameras and rays. Experiments using a SART approached proved similar to use of random ordering. Results
show the affect of other enhancements , including: masking the volume so that the reconstructed gradients are
set to zero beyond a specified radius r from the centre of the reconstructed volume;

—nk
j = 0, where r > rmask, (24)

rmask = 30Dx; adding an inversely iteration weighed Gaussian filtering of reconstructed density gradient fields
with a standard deviation of 2 voxels expressed as,
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where N is the total number of iterations to be performed; gradually unmasking the update to the reconstruc-
tion at each iteration using a threshold given by:
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where to is an initial threshold level set at t0 = 0.00044 Dnp
Dx ; and finally applying a Hamming window to the

correction:
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where the right-hand side of the equation is populated by taking the derivatives of the reconstructed gradient
fields using a 2nd-order central difference. This relatively low order scheme was chosen to reduce the influence
of reconstruction noise as is often done with PIV data (Foucaut and Stanislas, 2002). A universal boundary
condition of no was applied with q equal to zero at the boundaries with as in keeping with a measurement
domain large enough to capture the full extend of all gradients present in the flow. The Poisson equation
was solved using an iterative successive over relaxation (SOR) algorithm formulated for a discrete 2nd order
accurate kernel. For the present purpose of assessing the reconstruction approaches the SOR algorithm was
excessively run for approximately 1000 iterations, by which time the the magnitude of the update to the n
field was on the order 10�16.

4 Generation of Synthetic Background Images

In order to access the performance of the different reconstruction methods and their impact on the ability
of TBOS to resolves small scale temperature fluctuations in turbulent heated jets, synthetic BOS images
were created by tracing rays from each camera (via specified pinhole model) through a known refractive
index distribution. The raytracing was performed based on the angle between the incident ray and the local
interpolated refractive index gradient vector —n at 125 steps along the ray length through the measurement
volume, updating the direction of the ray at each step using Snell’s law where the refracted vector t̂ is given
by:

t̂ = n1
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n2 = n1 +—n · î (22)
where î is the unit vector of the incident ray, n̂ is the unit vector of —n and n1 is the local refractive index of the
incoming ray. Upon existing the measurement volume the final ray direction is maintained and projected onto
a simulated background image, the local intensity of which is taken to be the intensity that would be observed
by the originating pixel in the image plane. The use of Snell law rather than the integration of density gradients
along a fixed ray allows for the inclusion of the variations in the ray path which could effect the accuracy of
the TBOS reconstruction in the presence of strong localised variation in refractive index.

For the present investigation a synthetic field consisting of a Gaussian air jet with a peak change in refrac-
tive index of Dnp = 1.5⇥ 10�4 from n0 = 1.0, corresponding to a centreline temperature of approximately
368�C at standard atmospheric conditions, and a standard deviation s = 9 voxels. The measurement domain
of 65⇥ 3⇥ 65 voxels (43⇥ 2⇥ 43 mm) was sized based on a jet diameter of 10 mm and the use of a stan-
dard 1 Mpixel camera with a pixel size of 3.75⇥3.75µm2 equipped with f = 25 mm focal length lens with
aperture da = f/22, the optical centre positioned 275 mm from the centre of the volume and 575 mm from
the background so that an interrogation window of diw = 16 pixels would correspond to 16 voxels (0.66 mm)
when projected to the volume centre (equation 4) and remain larger than the BOS resolution estimated by
equation 3. The synthetic fields was generated at the same resolution to remove any effects of spatial filtering
from the analysis. Synthetic background images were created for different camera numbers, with cameras
even spaced in a 180� arc about the jet axis in the x-z plane (see figure 4). Such a camera configuration is
relatively practical to setup, leads itself well to FBP and results in reconstruction that is almost independent
of variation in the y� axis. This allows us to consider perform a more efficient comparison of the different
reconstruction methods by limiting our region of interest to a thin slice normal to the jet axis.

As the primary goal of the present analysis is to assess the ability of TBOS to resolve instantaneous
turbulent density fluctuations, the Gaussian refractive index distribution was modulated using sinusoids in the
x and z directions as given by:
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where lx and lz are wavelengths which are varied to present density fluctuations of differing length scales.
A is the amplitude of the modulation, which unless otherwise stated was set to 0.25 such that the field con-
sists of fluctuation up to 25% of the mean value which decay towards the jet boundaries, similar to passive
scalar fluctuations in a fully developed turbulent round jet (Panchapakesan and Lumley, 1993). The maximum
background displacements in the image plane were 1 pixel.



 

synthetic jet. Removing these regions then applying an ART 
reduces the sensitivity to the applied mask and in all cases 
converged to a solution better than that of ART alone by 
maintaining the strong gradients near the centre of the volume. 
ART with a null initial gradient field tends to under-predict the 
gradients near the centre of the volume and require 
approximately twice as many iterations to reach the same 
convergence. 

The accuracy of a TBOS computed refractive index field 
depends not only on the reconstruction methodology but also 
on the number of the background views, the strength of the 
density gradients and the relative distance between the volume 
and the background. The influence of the number of cameras 
and the wavelength of the oscillation in the refractive index 
field for the FBP+ART reconstructions is demonstrated in Fig. 
4 assuming exact calculations of the background displacement. 
A range of 6 to 22 cameras was considered as less camera 
results in significant errors and the benefit associated with the 
use of more cameras drops off significantly. 

 

 

Figure 4: Contour maps of the RMS and peak errors between 
the synthetic and computed refractive index fields normalised 
by the peak refractive index gradient from Poisson solution 
with refractive index gradients computed by FBP+ART 10 
iterations. 

In all cases reducing the wavelength of the density oscillations 
significantly increases both the RMS and peak errors in the 
reconstructed fields when compared to the synthetic field. The 
extent to which the magnitude of these errors are influenced by 
spatial resolution is still under investigation. Comparison of the 
different reconstruction methods shows that FBP+ART 
provides the most accurate estimate of the refractive index field 

across the entire range of wavelengths. Increasing the number 
of cameras improves the reconstruction, however the benefit 
beyond the use of 18 cameras is almost negligible. This 
suggests that high quality TBOS measurements of turbulent 
flows will likely require between 16 to 18 cameras. It is 
important to note that unlike PIV cameras the cameras used for 
BOS do not have to operate in a double shutter mode, allowing 
for the use of lower cost machine vision cameras. While results 
indicate that the mean reconstruction error across the field is 
relative small, the reconstruction in unable to accurately predict 
the strongest small scale gradients resulting in peak errors of up 
to 15% of the peak. 

4  Conclusions 

The ability of a tomographic background oriented schlieren 
technique to reconstruct a fluctuating density field of differing 
scales and camera number is assessed using filtered back 
projection, algebraic reconstruction and a combination of the 
two. In all cases, using the filtered back projection as an initial 
solution to the algebraic solution was found to yield the best 
reconstruction of both the core of the heated jet and the flow 
boundaries. The accuracy of the reconstruction is strongly 
affected by the scale of the density fluctuations. Attempts to 
improve the effective resolution of such measurements is 
currently underway.  

5  Acknowledgment 

The support of Australian Research Council (ARC) for this 
work is gratefully acknowledged, Dr. Atkinson was supported 
by an ARC Discovery Early Career Researcher Award 
(DECRA) fellowship while undertaking this work.  

References 

[1] G. Elsinga,, F. Scarano, B. Wieneke, B. van Oudheusden, 
Experiments in Fluids 41(6) (2006) 933–947  

[2] C. Atkinson, J. Soria, Experiments in Fluids 47(4) (2009) 
553–568  

[3] G. Meier, Experiments in Fluids 33 (2002) 181-187  

[4] B. Atcheson, I. Ihrke, W. Heidrich, A. Tevs, D. Bradley, M. 
Magnor, H.P. Seidel, Proc. ACM transactions on graphics 
(TOG), ACM, vol 27 (2008) 132- 

[5] E. Goldhahn, J. Seume, Experiments in Fluids 43(2-3) 
(2007) 241-249 

[6] A. C. Kak and M. Slaney, Principles of Computerized 
Tomographic Imaging, IEEE Press, 1988 

[7] G.T. Herman, A. Lent, Computers in biology and medicine 
6(4): (1976) 273– 294  

[8] H. Richard, M. Raffel, Measurement Science and 
Technology 12(9) (2001) 1576  

[9] N. Panchapakesan, J. Lumley, Journal of Fluid Mechanics 
246 (1993) 225–247  

 

 

14

(a)

(b)

(c)

(d)

Fig. 8 Contour maps of the RMS and peak errors between the synthetic and computed refractive index fields normalised by the
peak refractive index gradient from Poisson solution with refractive index gradients computed by: (a) FBP; (b) ART 20 iteration
with randomly ordered cameras and pixels, masked volume, inversely iterations weighted Gaussian filter, gradual unmasked
and Hamming windowed correction; (c) FBP+ART 10 iterations with randomly ordered cameras and pixels, masked volume,
inversely iteration weighted Gaussian filter, gradual unmasked and Hamming windowed correction; (d) FBP+SART 10 iterations
with randomly ordered cameras and pixels, masked volume, inversely iteration weighted Gaussian filter, gradual unmasked and
Hamming windowed correction.
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